
Parallelization of a sparse matrix-vector

multiplication algorithm

About the efficiency of the I/O library of MPI-2 using a parallelized

algorithm of a sparse matrix-vector multiplication

M.M.P. van Hulten

May 19, 2006

Contents

1 Introduction 2

2 Theory 2

3 Version background 2

4 Setup 2

4.1 Normal I/O (mod3a 6.1) . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.2 MPI-IO (mod3a 6.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 Execution of the tests . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Results and discussion 4

6 Conclusion 5

A Result plots 6

A.1 MPI I/O, n=25000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.2 MPI I/O, m=100000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.3 MPI I/O, miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.4 MPI, I/O on master . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B Fortran code 15

B.1 mod3a-6.0 specific source code . . . . . . . . . . . . . . . . . . . . . 15
B.2 mod3a-6.1 specific source code . . . . . . . . . . . . . . . . . . . . . 22
B.3 mod3a-6.x generic source code . . . . . . . . . . . . . . . . . . . . . 29

1



1 Introduction

The purpose of this research is to find out what is the best way to parallelize a
program which processes so much data that I/O is unavoidable.

A not so smart solution to this problem is to just parallelize the program, don’t
mind the I/O in all processes and hope everything will go fine.

In the scope of this research two smarter solutions are suggested and compared.
The first is to handle the I/O by one process and send the necessary data from
this process to other processes. The second is to use an extra layer of software that
handles I/O.

The hypothesis is that the second solution is more efficient, because in that case
messages would be passed directly between the filesystem and a process, so no extra
communication should be needed between processes. This however all depends on
the implementation of this extra I/O handling layer.

2 Theory

For the parallelization of the calculation MPI, Message Passing Interface, is used.
MPI I/O is used for the extra I/O layer, which is contained in the MPI-2 standard.

For a detailed background about MPI see [2] and for MPI-2 specific features like
MPI-IO, see [3].

The matrices used in the benchmarks are sparse and therefore compressed. The
format used to accomplish this is Compressed Row Storage (CRS) [1]. This format
contains three different types of arrays. The first is a single array, containing the
number of non-zero elements in each row. For each row there is an array containing
the non-zero elements, as well as an array containing the column index of each of
these non-zero elements.

3 Version background

Initially the parallelized version of the program would have been based on mod3a
4.2, but the structure of the program didn’t suffice. There is a working version
based on version 4.2, named ‘mod3a 5.0pre4’. The job distribution is very inefficient.
Therefore a rewrite is done, giving us ‘mod3a 6.0rc2’, the MPI I/O implementation,
and ‘mod3a 6.1rc3’, the normal I/O version. These two versions are similar in
structure and discussed in this paper. ‘mod3a 6.0rc2’ is working, but it possibly
needs a bit of polishing. In the following I’ll call this just ‘version 6.0’ or the MPI
I/O version. The ‘rc’ in ‘mod3a 6.1rc3’ is rather pretentious, because it actually
does not work (rc1 does, but is not efficient). In the following I’ll just call this
‘version 6.1’ or the version without MPI I/O.
Both versions 6.0 and 6.1 are included as an appendix of this paper. Other versions
are also available [5]. All versions are licensed under the GNU General Public
License version 2 [4] and later versions of the GNU GPL.

4 Setup

The Fortran source code is shown in appendix B. See the following sections for an
explanation of the relevant source.

2



4.1 Normal I/O (mod3a 6.1)

For the version without MPI I/O (appendix B.2), the data generation is done on
the master process, as follows.

If ( myid .eq. 0 ) Then

Do i = 1, n

Call genraja( m, n, i, na, lura, luja, writim )

End Do

End If

Here genraja() generates a row of data in Compressed Row Storage (CRS) format.
The data is written to the file lura (containing the non-zero elements) and luja
(containing the column indices of the non-zero elements).
After rewinding lura and luja and putting in a MPI Barrier(), the calculation
will start, but just ‘jobsize’ rows per run, to avoid too many MPI Send() and
MPI Recv() calls at the same time. Within the loop the job is divided over all
processes (except for process zero) al follows.

Do i = 1, nprocs-1

If ( myid == 0 ) Then

Allocate( ra( offset(i)+1:offset(i+1) ), stat=alloc_stat )

Allocate( ja( offset(i)+1:offset(i+1) ), stat=alloc_stat )

! Read and distribute rows (ra and ja)

Read( lura ) ra

Read( luja ) ja

Call MPI_Send( ra( offset(i)+1 : offset(i+1) ), &

offset(i+1) - offset(i), MPI_REAL8, i, 1, &

MPI_COMM_WORLD, ierr )

Call MPI_Send( ja( offset(i)+1 : offset(i+1) ), &

offset(i+1) - offset(i), MPI_INTEGER, i, 2, &

MPI_COMM_WORLD, ierr )

Deallocate( ra, stat=alloc_stat )

Deallocate( ja, stat=alloc_stat )

So the data is read by the master process (zero) and sent to all other processes.
Each process (not zero) will receive the data, see below. This data is then used to
calculate the dot products.

Else

If ( myid == i ) Then

Allocate( ra( offset(i)+1:offset(i+1) ), stat=alloc_stat )

Allocate( ja( offset(i)+1:offset(i+1) ), stat=alloc_stat )

! Receive ra and ja (all rows for this process).

Call MPI_Recv( ra( offset(myid)+1 : offset(myid+1) ), &

offset(myid+1) - offset(myid), MPI_REAL8, 0, 1, &

MPI_COMM_WORLD, istat, ierr )

Call MPI_Recv( ja( offset(myid)+1 : offset(myid+1) ), &

offset(myid+1) - offset(myid), MPI_INTEGER, 0, 2, &

MPI_COMM_WORLD, istat, ierr )

! Calculate dot products.

Do j = myrow_os + 1, myrow_os + mynrows

Call smxv( m, n, irun*jobsize + j, ra, ja, b, c, na, &

3



myoffset, offset, lura, luja, readtim, myid, nprocs )

End Do

Deallocate( ra, stat=alloc_stat )

Deallocate( ja, stat=alloc_stat )

End If

End If

Call MPI_Barrier( MPI_COMM_WORLD, ierr )

End Do

To be sure everything goes well, a MPI Barrier() is set at the end of the loop.
The result vector, ‘c’, is collected on the master node.

Call MPI_AllGatherV ( &

c( irun*jobsize+myrow_os+1 : irun*jobsize+myrow_os+mynrows ), &

mynrows, MPI_REAL8, c( irun*jobsize + 1 : (irun+1) * jobsize ), &

nrows, row_os, MPI_REAL8, MPI_COMM_WORLD, ierr )

That’s it.

4.2 MPI-IO (mod3a 6.0)

The data is generated per row.

Do i = myrow_os + 1, myrow_os + mynrows

Call genraja( m, n, i, na, myoffset, lura, luja, writim )

End Do

Here ‘myrow os’ and ‘mynrows’ are dependent on the process that is running, in
such a way that the work is as equal as possible split over all processes.
The same strategy is used for the calculation.

Do i = myrow_os + 1, myrow_os + mynrows

Call smxv( m, n, i, b, c, na, myoffset, lura, luja, readtim, nprocs )

End Do

In both genraja() and smxv() the special calls MPI File read at() and MPI File write at()
are used for I/O.

4.3 Execution of the tests

The programs are executed on an IRIX64 machine with eight CPU’s.
For each of the chosen matrix dimensions (m and n) performance tests will

be done when running with one process, with two processes. . . upto eight or nine
processes. Each of these tests are repeated five to ten times, giving us a decent
standard deviation.

5 Results and discussion

All the time measurements are shown in Appendix A. Uninteresting raw data can
be found on this site [5] (the gnumeric spread sheets).

Looking at the MPI-IO results for n=25000, there seems hardly any performance
gain at all. Almost all results show an extreme decrease in execution time from
seven to eight processes. A possible explanation would be that some regulary used
variables, like b, the multiplication vector, are not flushed from de CPU cache above
some number of processes, because of the decrease in jobsizes with the increase of

4



the number of processes. However, fixing the number of columns and varying the
number of rows, and vice versa, do not change this transition location in nprocs.

Another approach to this curiosity is to only count the measurements for one,
two, three, maybe four, and eight (and higher) processes for real measurements, and
ignore the rest. We can imagine, for most graphs, a smooth curve. It is possible
that it goes wrong from four/five to seven processes, because the operating system
is doing other stuff. From eight processes and higher the processes aren’t locked
anymore to specific processors and because of an intelligent dynamic distribution
of processes over the processors by the operation system, the performance is better
and more in line with our expectations.

When increasing the number of columns excessively, as done for the graphs in
appendix A.3, it is shown that there is, in this specific usage of the program, perfor-
mance gain when parallelizing. This is already visible when using 500000 columns
and it is even more obvious with 20,000,000 columns, even though there is some
kind of superlinear performance from three to four processes, for which an expla-
nation would need more tests which is outside the scope of this research. That
the parallelization works for this kind of row size was to be expected, because the
data is processed per row, so the data chunks are large and the MPI overhead is
relatively small.

Something else that got my attention is that the processes do not show much
CPU usage, so my guess is that the I/O isn’t going well and is the likely bottleneck.
In future research this program should be tested on different machines and also
compared with master-only I/O results. The latter is tried, as seen in the last plot,
but the code (mod3a 6.1rc3) doesn’t run flawless at all and even gives the wrong
results. It could however very well be used as it is programmed rather clean and
checked over and over, just like the MPI-IO version (mod3a 6.0rc2).

The last plot (appendix A.4 shows results around 0.6 seconds, while the first
graph from A.3 (same matrix size) only shows results significantly above 0.6 seconds
(1 second and higher). This hints strongly to a bad performance of the MPI-IO
implementation.

6 Conclusion

At least for a small number of columns (number of elements per row) the MPI-IO
implementation desastrously fails in efficiently parallelizing the sparse matrix-vector
multiplication.

For a large number of columns there seems to be some performance gain, but
also some awkward results (superlinear performance gain).

More research is needed before any conclusions can be made about MPI-IO.
At the very least the timing results should be compared with timing results of a
(working) master-I/O version, structured like mod3a 6.0, as well as runs on other
machines.

5



A Result plots

A.1 MPI I/O, n=25000

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

nprocs

mod3a-6.0, m=1000, n=25000

"mpiio-rc2-1000x25000.txt" using 1:2:3

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=2000, n=25000

"6.0-2000x25000.dat" using 1:2:3

6



 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

nprocs

mod3a-6.0, m=4000, n=25000

"mpiio-rc2-4000x25000.txt" using 1:2:3

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=8000, n=25000

"mpiio-rc2-8000x25000.txt" using 1:2:3

7



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

nprocs

mod3a-6.0, m=14000, n=25000

"mpiio-rc2-14000x25000.txt" using 1:2:3

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=20000, n=25000

"mpiio-rc2-20000x25000.txt" using 1:2:3

8



 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=40000, n=25000

"mpiio-rc2-40000x25000.txt" using 1:2:3

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=25000

"mpiio-rc2-100000x25000.txt" using 1:2:3

9



A.2 MPI I/O, m=100000

-1

 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=1000

"mpiio-rc2-100000x1000.txt" using 1:2:3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=4000

"mpiio-rc2-100000x4000.txt" using 1:2:3

10



 0

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=7000

"mpiio-rc2-100000x7000.txt" using 1:2:3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=10000

"mpiio-rc2-100000x10000.txt" using 1:2:3

11



 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=16000

"mpiio-rc2-100000x16000.txt" using 1:2:3

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=100000, n=25000

"mpiio-rc2-100000x25000.txt" using 1:2:3

12



A.3 MPI I/O, miscellaneous

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=500000, n=1260

"6.0-500000x1260.dat" using 1:2:3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.0, m=20000000, n=120

"6.0-20000000x120.dat" using 1:2:3

13



A.4 MPI, I/O on master

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7  8

tim
e 

(s
)

nprocs

mod3a-6.1, m=2000, n=25000

"6.1-2000x25000" using 1:2:3

14



B Fortran code

B.1 mod3a-6.0 specific source code

Program mod3a

! **********************************************************************
! *** This program is part of the EuroBen Benchmark ***
! *** Copyright: EuroBen Group p/o ***
! *** Utrecht University, Physics Department, ***
! *** High Performance Computing Group ***
! *** P.O. Box 80.000 ***
! *** 3508 TA Utrecht ***
! *** The Netherlands ***
! *** *** 10

! *** Author of the original program: Aad van der Steen ***
! *** Rewrite by: Marco van Hulten ***
! *** Date January 1995, bug fix May 1997, Fortran 90 version ***
! *** Spring 1999 (Aad), MPI−2 version Febr 2006 (Marco) ***
! **********************************************************************
! Version 6.0rc2 −− MPI implementation (with MPI−IO)
!
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! MOD3a tests a version of a condensed matrix−vector multiplication.
! The main program drives the subroutine ’smxv’ which does the actual 20

! work. It does a vector update c(n) = A(n,m)*b(m) + c(n).
! A is an (n,m) matrix in condensed form: For each of the ’n’ rows the

! number of elements /= 0.0 is held in array na(n) which resides in

! core.
! The column numbers for entries /= 0.0 of A are held in array ’ja’ and

! the entries proper in array ’ra’. Both are on disk.
! ’b’ is an (m)−vector which is held in core.
! ’c’ is an (n)−vector which is held in core.
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30

Use numerics

Use mpi

Implicit None

! Logical units for files

Integer :: luin, lura, luja

Character*12 :: filein="mod3a.in"

! Arrays dependent of input parameters

Real(l ), Allocatable :: b(:), c(:), ra(:) 40

Integer, Allocatable :: na(:), ja(:)
Integer :: m, n, alloc stat

! Row location and number of rows per process

Integer, Allocatable :: row os(:), nrows(:)
Integer :: myrow os, mynrows, i

! Element offset and total number of elements per process

Integer, Allocatable :: offset(:)
Integer :: myoffset, na max, j 50

! Needed for checking when EOF luin

Integer( kind=MPI OFFSET KIND ) :: iteration, sizeluin

Integer, Parameter :: ilen = 4

! Variables used in the MPI function calls

Integer :: myid, nprocs, ierr, stat( MPI STATUS SIZE )

! Timing variables

Real(l ) :: readtim, writim 60

Real(l ) :: time gen, time cal

15



! Function for generating random numbers

Real(l ) :: dran1

! Other variables for correctness and performance checks

Real(l ) :: ioread, iowrit, mflops, var

Integer :: idum, nfill, nflops

Logical :: allok

70

Real(l ), Parameter :: zero = 0.0 l , one = 1.0 l , two = 2.0 l , &
twenp = 0.2 l , half = 0.5 l , micro = 1.0e−6 l , &
nano = 1.0e−9 l

Integer( kind=MPI OFFSET KIND ), Parameter :: nul = 0

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Initialize variables.
! −−− 80

writim = zero

readtim = zero

allok = .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Initialize MPI environment.
! −−−
Call MPI INIT( ierr )
Call MPI COMM RANK( MPI COMM WORLD, myid, ierr )
Call MPI COMM SIZE( MPI COMM WORLD, nprocs, ierr ) 90

Allocate( row os( nprocs ), STAT=alloc stat )
Call ErrorCheck( "row_os", alloc stat )

Allocate( nrows( nprocs ), STAT=alloc stat )
Call ErrorCheck( "nrows ", alloc stat )

Allocate( offset( nprocs ), STAT=alloc stat )
Call ErrorCheck( "offset", alloc stat )

100

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Call identification routine for this program and print start of

! output table.
! −−−
If ( myid .eq. 0 ) Then

Call state( ’mod3a’ )
Print 1000

End If

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 110

! Open files for input and to hold ’ja’ and ’ra’ (the matrix).
! −−−
Call Input( luin, filein, sizeluin, myid )

Call MPI File open( MPI COMM WORLD, ’data-ra’, MPI MODE RDWR + MPI MODE CREATE, &
MPI INFO NULL, lura, ierr )

Call MPI File set view( lura, nul, MPI REAL8, MPI REAL8, "native", &
MPI INFO NULL, ierr )

Call MPI File open( MPI COMM WORLD, ’data-ja’, MPI MODE RDWR + MPI MODE CREATE, &
MPI INFO NULL, luja, ierr ) 120

Call MPI File set view( luja, nul, MPI INTEGER, MPI INTEGER, "native", &
MPI INFO NULL, ierr )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Iterate program, until end of file luin.
! −−−
Do iteration = 1, sizeluin, 2*ilen

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Read input parameters from luin and allocate memory for arrays.

16



! −−− 130

Call MPI File read all( luin, m, 1, MPI INTEGER, stat, ierr )
Call MPI File read all( luin, n, 1, MPI INTEGER, stat, ierr )

Allocate( b(m), stat=alloc stat )
If ( alloc stat .ne. 0 ) Then

Print*, "Allocation of b failed. Errorcode =", alloc stat, "; m =", m

allok = .False.
Exit

End If

140

Allocate( c(n), stat=alloc stat )
If ( alloc stat .ne. 0 ) Then

Print*, "Allocation of c failed. Errorcode =", alloc stat, "; n =", n

allok = .False.
Exit

End If

Allocate( na(n), stat=alloc stat )
If ( alloc stat .ne. 0 ) Then

Print*, "Allocation of na failed. Errorcode =", alloc stat, "; n =", n 150

allok = .False.
Exit

End If

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Now generate for each row the number indicating the columns that

! are /= 0.0. The array ’na’ holding these numbers is entirely in core

! (since version 6.0).
! ’na_max’ is the size of the biggest row of the matrix.
! The filling of the matrix with elements /= 0.0 is about 0.1% 160

! and we choose a variation in the number of row entries of

! about 20%.
! We count the total number of row entries as 2*Sum(na(i)) is the

! number of flops performed in the program.
! No advantages of MPI are used here.
! This is a dependency for the initialisation of the job distribution

! variables (below).
! −−−
nfill = m/1000
nflops = 0 170

var = twenp*Real( nfill, l )
idum = −666
na max = 0

Do i = 1, n

na(i) = nfill + Int( var*( dran1( idum ) − half ) )
na max = Max( na max, na(i) )
nflops = nflops + na(i)

End Do

180

Allocate( ra(na max), stat=alloc stat )
Allocate( ja(na max), stat=alloc stat )

nflops = 2*nflops

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Initialize job distribution variables.
! −−−
!
! Calculate row offsets for all processes, and the number of rows 190

! to do for all processes (first few processes get a row more).
! And calculate element offsets for calculation.
Do i = 1, nprocs

If ( i <= Mod(n, nprocs) ) Then

nrows(i) = n/nprocs + 1
Else

17



nrows(i) = n/nprocs

End If

End Do

mynrows = nrows(myid+1) 200

row os(1) = 0
Do i = 2, nprocs

row os(i) = row os(i−1) + nrows(i−1)
End Do

myrow os = row os(myid+1)

offset(1) = 0
Do j = 2, nprocs

offset(j) = offset(j−1) 210

Do i = row os(j−1) + 1, row os(j)
offset(j) = offset(j) + na(i)

End Do

End Do

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Generate data for ’b’, ’c’, ’ja’ and ’ra’.
! −−−
!
! Define multiplication vector b. This is done on all processes. 220

Do i = 1, m

b(i) = one

End Do

Call MPI Barrier( MPI COMM WORLD, ierr )
time gen = MPI Wtime()

! Generate ’ja’ and ’ra’. These arrays are never entirely in core

! and are written per ’mynrows’ rows.
idum = −1993 − myid 230

myoffset = offset(myid+1)
Do i = myrow os + 1, myrow os + mynrows

Call genraja( m, n, i, na, na max, ra, ja, myoffset, lura, luja, &
idum, writim )

End Do

Call MPI Barrier( MPI COMM WORLD, ierr )
time gen = MPI Wtime() − time gen

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 240

! End of data generation. We now time the matrix multiplication.
! The actual calculation is done in smxv().
! −−−
Call MPI Barrier( MPI COMM WORLD, ierr )
time cal = MPI Wtime()

! Calculate dot products and send to master node.
myoffset = offset(myid+1)
Do i = myrow os + 1, myrow os + mynrows

Call smxv( m, n, i, b, c, na, na max, ra, ja, myoffset, lura, luja, & 250

readtim )
End Do

Call MPI AllGatherV( c(myrow os+1:myrow os+mynrows), mynrows, MPI REAL8, &
c, nrows, row os, MPI REAL8, MPI COMM WORLD, ierr )

Call MPI Barrier( MPI COMM WORLD, ierr )
time cal = MPI Wtime() − time cal

mflops = micro * Max( Real( nflops, l )/time cal, nano ) 260

Print 1010, n, m, time cal, mflops, ioread, iowrit

! insert correctness check here. . .(set ’allok’ to false if not ok) FIXME!

18



Deallocate( b, stat=alloc stat )
if ( alloc stat .ne. 0 ) then

Print*, "Deallocation of b failed. Errorcode =", alloc stat

allok = .False.
Stop

end if 270

Deallocate( c, stat=alloc stat )
if ( alloc stat .ne. 0 ) then

Print*, "Deallocation of c failed. Errorcode =", alloc stat

allok = .False.
Stop

end if

Deallocate( na, stat=alloc stat )
if ( alloc stat .ne. 0 ) then 280

Print*, "Deallocation of na failed. Errorcode =", alloc stat

allok = .False.
Stop

end if

END DO

Call MPI Barrier( MPI COMM WORLD, ierr )

If ( myid .eq. 0 ) Then 290

Print 1020
If ( allok ) Print 1040 ! FIXME (all proc’s)

End If

! --------------------------------------------------------------------

! Close files and exit MPI environment.

! ---

call MPI_File_close( luin, ierr )

call MPI_File_close( lura, ierr )

call MPI_File_close( luja, ierr ) 300

call MPI_Finalize( ierr )

! --------------------------------------------------------------------

! Formats.

! ---

1000 Format ( /, " ", 48(’−’), &

’−−−−−−−−−−−−−−−−−−−−−−−−−−−’, &

/,’ Mod3a: Out−of−core Matrix−vector ’, &

’multiplication’,/ &

74(’−’),/ & 310

’ Row | Column | Exec. time | Mflop rate |’, &

’ Read rate | Write rate |’,/ &

’ (n) | (m) | (sec) | (Mflop/s) |’, &

’ (MB/s) | (MB/s) |’,/ &

’−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+’, &

’−−−−−−−−−−−−−+−−−−−−−−−−−−−+’ )

1010 Format ( I7, ’ |’, I7, ’ |’, G13.5, ’|’, G13.5, ’|’, G13.5, &

’|’, G13.5, ’|’ )

1020 Format ( 74(’−’) )

1030 Format ( ’Deviation in row ’, I7, ’ = ’, G13.5 ) 320

1040 Format ( //,’ >>> All results were within error bounds <<<’ )

! --------------------------------------------------------------------

End Program mod3a

Subroutine genraja( m, n, i, na, na˙max, ra, ja, myoffset, lura, luja, &

idum, writim )

! --------------------------------------------------------------------

! Routine ’genraja’ generates the relevant parts of the arrays ’ra’ and ’ja’.
! The relevant parts of these arrays are written per row to unit ’lura’ and

19



! ’luja’, respectively.
! Note that ra and ja are actually na max long, but only na(i) is used.
! −−−

Use numerics 10

Implicit None

Integer :: na max

Real(l ) :: ra(na max)
Integer :: ja(na max)

Integer :: m, n, i, myoffset, lura, luja

Integer :: na(n), idum

Real(l ) :: writim

20

! Local constants and variables.
Real(l ), External :: dran1

Real(l ), Parameter :: one = 1.0 l

Integer :: j

! Generate data.
Do j = 1, na(i)

ra(j) = one

ja(j) = Min( m, Int( m*dran1( idum ) ) + 1 )
End Do 30

! Write data to lura and luja.
Call Write raja( lura, luja, myoffset, ra, ja, na(i), writim )

! Calculate new offset.
myoffset = myoffset + na(i)

End Subroutine genraja

Subroutine Write raja( lura, luja, offset, ra, ja, count, writim )

Use Numerics

Use mpi

Implicit None

Integer :: offset, count

Integer :: lua, ja(count), lura, luja

Real(l ) :: ra(count), writim

10

! Local variables and parameters

Integer :: ierr, stat( MPI STATUS SIZE )
Real :: t0

Integer, Parameter :: dlen = 8, ilen = 4, alen = dlen + ilen

Integer (kind = MPI OFFSET KIND) :: foffset ra, foffset ja

foffset ra = offset*dlen

foffset ja = offset*ilen
20

t0 = MPI Wtime()
Call MPI File write at( lura, foffset ra, ra, count, MPI REAL8, &

stat, ierr )
Call MPI File write at( luja, foffset ja, ja, count, MPI INTEGER, &

stat, ierr )
writim = writim + MPI Wtime() − t0

if ( ierr .ne. 0 ) then

Print*, "Writing to file lua failed! ierr =", ierr

Stop 30

end if

20



End Subroutine

Subroutine smxv( m, n, i, b, c, na, na max, ra, ja, myoffset, lura, luja, readtim )
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Calculates a chunk of the product c(n) = A(n,m)*b(m) + c(n).
! The length of this part is at most ’lamax’ long.
! Routine ’smxv’ should be called about n/nprocs times per process

! to cover all ’n’ entries of vector ’c’.
! Matrix A is in ’lsqr-format’. ’c’ is in core. The number of column

! entries per row is stored in array ’na’ which is also in core.
! ’ra’ and ’ja’ are read from units lura and luja and contain the

! non−zero matrix entries and the column indices where they are 10

! stored, respectively.
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Use numerics

Implicit None

Integer :: na max

Real(l ) :: ra(na max)
Integer :: ja(na max)

Integer :: m, n, i, lura, luja 20

Integer :: myoffset, na(n)
Real(l ) :: b(m), c(n)
Real(l ) :: readtim

! Local variables and constants.
Integer :: j

Real(l ), Parameter :: zero = 0.0 l

! Read data from lura and luja.
Call Read raja( lura, luja, myoffset, ra, ja, na(i), readtim ) 30

! Calculate dot product.
c(i) = zero

Do j = 1, na(i)
c(i) = c(i) + ra(j)*b(ja(j))

End Do

! Calculate new offset.
myoffset = myoffset + na(i)

40

End Subroutine smxv

Subroutine Read raja( lura, luja, offset, ra, ja, count, readtim )

Use Numerics

Use mpi

Implicit None

Integer :: offset, count

Integer :: lura, luja, ja(count)
Real(l ) :: ra(count), readtim

10

! Local variables and parameters

Integer :: ierr, stat( MPI STATUS SIZE )
Real(l ) :: t0

Integer, Parameter :: dlen = 8, ilen = 4, alen = dlen + ilen

Integer (kind=MPI OFFSET KIND) :: foffset ra, foffset ja

foffset ra = offset*dlen

foffset ja = offset*ilen

t0 = MPI Wtime() 20

21



Call MPI File read at( lura, foffset ra, ra, count, MPI REAL8, &
stat, ierr )

if ( ierr .ne. 0 ) then

Print*, "Reading from file lura failed! ierr =", ierr

STOP

end if

Call MPI File read at( luja, foffset ja, ja, count, MPI INTEGER, &
stat, ierr )

if ( ierr .ne. 0 ) then 30

Print*, "Reading from file luja failed! ierr =", ierr

STOP

end if

readtim = readtim + MPI Wtime() − t0

End Subroutine

B.2 mod3a-6.1 specific source code

Program mod3a

! **********************************************************************
! *** This program is part of the EuroBen Benchmark ***
! *** Copyright: EuroBen Group p/o ***
! *** Utrecht University, Physics Department, ***
! *** High Performance Computing Group ***
! *** P.O. Box 80.000 ***
! *** 3508 TA Utrecht ***
! *** The Netherlands ***
! *** *** 10

! *** Author of the original program: Aad van der Steen ***
! *** Rewrite by: Marco van Hulten ***
! *** Date January 1995, bug fix May 1997, Fortran 90 version ***
! *** Spring 1999 (Aad), MPI−2 version Febr 2006 (Marco) ***
! **********************************************************************
! Version 6.1rc3 −− MPI implementation (without MPI−IO)
!
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! MOD3a tests a version of a condensed matrix−vector multiplication.
! The main program drives the subroutine ’smxv’ which does the actual 20

! work. It does a vector update c(n) = A(n,m)*b(m) + c(n).
! A is an (n,m) matrix in condensed form: For each of the ’n’ rows the

! number of elements /= 0.0 is held in array na(n) which resides in

! core.
! The column numbers for entries /= 0.0 of A are held in array ’ja’ and

! the entries proper in array ’ra’. Both are on disk.
! ’b’ is an (m)−vector which is held in core.
! ’c’ is an (n)−vector which is held in core.
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30

Use numerics

Use mpi

Implicit None

! Logical units for files

Integer, Parameter :: luin=2, lura=8, luja=10
Character*12 :: filein="mod3a.in"

! Arrays dependent of input parameters

Real(l ), Allocatable :: b(:), c(:), ra(:) 40

Integer, Allocatable :: na(:), ja(:)
Integer :: m, n, alloc stat

! Row location and number of rows per process

22



Integer, Allocatable :: row os(:), nrows(:)
Integer :: myrow os, mynrows, i

! Element offset and total number of elements per process

Integer, Allocatable :: offset(:)
Integer :: myoffset, na max 50

! Job divizing variables, only in version 6.1.
Integer :: jobsize, jobrest

Integer :: ndb, irun, main os

! Variables used in the MPI function calls

Integer :: myid, nprocs, ierr, istat( MPI STATUS SIZE ), j

! Timing variables

Real(l ) :: readtim, writim 60

Real(l ) :: time gen, time cal

! Function for generating random numbers

Real(l ) :: dran1

! Other variables for correctness and performance checks

Real(l ) :: ioread, iowrit, mflops, var

Integer :: idum, nfill, nflops

Logical :: allok

70

Real(l ), Parameter :: zero = 0.0 l , one = 1.0 l , two = 2.0 l , &
twenp = 0.2 l , half = 0.5 l , micro = 1.0e−6 l , &
nano = 1.0e−9 l

Integer( kind=MPI OFFSET KIND ), Parameter :: nul = 0

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Initialize variables.
! −−− 80

jobsize = 480
writim = zero

readtim = zero

allok = .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Initialize MPI environment.
! −−−
Call MPI INIT( ierr )
Call MPI COMM RANK( MPI COMM WORLD, myid, ierr ) 90

Call MPI COMM SIZE( MPI COMM WORLD, nprocs, ierr )

If (nprocs == 1) Then

Print*, "Run this program with at least two processes!"

allok = .False.
GoTo 610

End If

Allocate( row os( nprocs ), STAT=alloc stat )
Call ErrorCheck( "row_os", alloc stat ) 100

Allocate( nrows( nprocs ), STAT=alloc stat )
Call ErrorCheck( "nrows ", alloc stat )

Allocate( offset( nprocs ), STAT=alloc stat )
Call ErrorCheck( "offset", alloc stat )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Call identification routine for this program and print start of

! output table. 110

! −−−

23



If ( myid .eq. 0 ) Then

Call state( ’mod3a’ )
Print 1000

End If

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Open files for input and to hold ’ja’ and ’ra’ (the matrix).
! −−−
Open( luin, File = filein ) 120

Open( lura, File=’data-ra’, Form=’unformatted’, Status=’scratch’ )
Open( luja, File=’data-ja’, Form=’unformatted’, Status=’scratch’ )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Iterate program, until end of file luin.
! −−−
Do

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Read input parameters from luin and allocate memory for arrays.
! −−− 130

Read( 2, *, End = 610 ) m, n

Allocate( b(m), stat=alloc stat )
If ( alloc stat .ne. 0 ) Then

Print*, "Allocation of b failed. Errorcode =", alloc stat, "; m =", m

allok = .False.
Exit

End If

Allocate( c(n), stat=alloc stat ) 140

If ( alloc stat .ne. 0 ) Then

Print*, "Allocation of c failed. Errorcode =", alloc stat, "; n =", n

allok = .False.
Exit

End If

Allocate( na(n), stat=alloc stat )
If ( alloc stat .ne. 0 ) Then

Print*, "Allocation of na failed. Errorcode =", alloc stat, "; n =", n

allok = .False. 150

Exit

End If

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Now generate for each row the number indicating the columns that

! are /= 0.0. The array ’na’ holding these numbers is entirely in core

! (since version 6.0).
! ’na_max’ is the size of the biggest row of the matrix.
! The filling of the matrix with elements /= 0.0 is about 0.1%
! and we choose a variation in the number of row entries of 160

! about 20%.
! We count the total number of row entries as 2*Sum(na(i)) is the

! number of flops performed in the program.
! No advantages of MPI are used here.
! This is a dependency for the initialisation of the job distribution

! variables (below).
! −−−
nfill = m/1000
nflops = 0
var = twenp*Real( nfill, l ) 170

idum = −666
na max = 0

Do i = 1, n

na(i) = nfill + Int( var*( dran1( idum ) − half ) )
na max = Max( na max, na(i) )
nflops = nflops + na(i)

End Do

24



Allocate( ra(na max), stat=alloc stat ) 180

Allocate( ja(na max), stat=alloc stat )

nflops = 2*nflops

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Generate data for ’b’, ’c’, ’ja’ and ’ra’.
! −−−
!
! Define multiplication vector b. This is done on all processes.
Do i = 1, m 190

b(i) = one

End Do

Call MPI Barrier( MPI COMM WORLD, ierr )
time gen = MPI Wtime()

! Generate ’ja’ and ’ra’. These arrays are never entirely in core

! and are written row by row.
! This is done by the master, for simplicity.
If ( myid .eq. 0 ) Then 200

idum = −1993
Do i = 1, n

Call genraja( m, n, i, na, na max, ra, ja, lura, luja, &
idum, writim )

End Do

End If

Call MPI Barrier( MPI COMM WORLD, ierr )
time gen = MPI Wtime() − time gen

210

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! End of data generation. We now time the matrix multiplication.
! The actual calculation is done in smxv().
! −−−
Rewind( lura )
Rewind( luja )

Call MPI Barrier( MPI COMM WORLD, ierr )
time cal = MPI Wtime()

220

! Divide job in jobsizes of ’jobsize’ rows. ’ndb’ is the number

! of data blocks.
! This devision is done because otherwise there are problems with

! the number of ’simultaneous’ MPI Send() and MPI Recv() calls.
ndb = n / jobsize

jobrest = Mod( n, jobsize )

! Outer loop calculation

Do irun = 0, ndb

If ( irun .eq. ndb ) Then 230

If ( jobrest .eq. 0 ) Then

Exit

Else

jobsize = jobrest

End If

End If

! Initialize job distribution variables for these ’jobsize’ rows.
Do i = 2, nprocs

If ( i <= Mod( jobsize, nprocs−1 ) ) Then 240

nrows(i) = jobsize/(nprocs−1) + 1
Else

nrows(i) = jobsize/(nprocs−1)
End If

End Do

25



mynrows = nrows(myid+1)

row os(2) = 0
Do i = 3, nprocs

row os(i) = row os(i−1) + nrows(i−1) 250

End Do

myrow os = row os(myid+1)

offset(2) = 0
Do j = 3, nprocs

offset(j) = offset(j−1)
Do i = row os(j−1) + 1, row os(j)

offset(j) = offset(j) + na(i)
End Do

End Do 260

myoffset = offset(myid+1)

! Note that the master process is not used for the calculation.
!
! ’j’ will be the process counter, meaning myid will be checked to

! this variable. This way a clean Send/Recv structure can be used.
! ’i’ will be the row counter with respect to to the outer loop

! offset (main os), which gives us row index main os + i.
!
Do j = 1, nprocs−1 270

Do i = row os(j+1) + 1, row os(j+1) + nrows(j+1)
If ( myid == 0 ) Then

! Read and distribute rows (ra and ja)
Read( lura ) ra( 1 : na(main os + i) )
Read( luja ) ja( 1 : na(main os + i) )
Call MPI Send( ra( 1 : na(main os + i) ), &

na(main os + i), MPI REAL8, j, 1, &
MPI COMM WORLD, ierr )

Call MPI Send( ja( 1 : na(main os + i) ), & 280

na(main os + i), MPI INTEGER, j, 2, &
MPI COMM WORLD, ierr )

Else If ( myid == j ) Then

! Receive ra and ja (all rows for this process).
Call MPI Recv( ra( 1 : na(main os + i) ), &

na(main os + i), MPI REAL8, 0, 1, &
MPI COMM WORLD, istat, ierr )

Call MPI Recv( ja( 1 : na(main os + i) ), & 290

na(main os + i), MPI INTEGER, 0, 2, &
MPI COMM WORLD, istat, ierr )

! Calculate dot products.
Call smxv( m, n, main os + i, b, c, na, na max, &

ra, ja, myoffset, lura, luja, readtim, myid, nprocs )
End If

End Do

Call MPI Barrier( MPI COMM WORLD, ierr ) 300

End Do

! FIXME! −check bounds geeft hier een probleem.
Call MPI AllGatherV ( &

c( main os+myrow os+1 : main os+myrow os+mynrows ), &
mynrows, MPI REAL8, c( main os + 1 : main os + jobsize ), &
nrows, row os, MPI REAL8, MPI COMM WORLD, ierr )

End Do

Call MPI Barrier( MPI COMM WORLD, ierr ) 310

time cal = MPI Wtime() − time cal

26



mflops = micro * Max( Real( nflops, l )/time cal, nano )
Print 1010, n, m, time cal, mflops, ioread, iowrit

! insert correctness check here. . .(set ’allok’ to false if not ok) FIXME!

Deallocate( b, stat=alloc stat )
if ( alloc stat .ne. 0 ) then

Print*, "Deallocation of b failed. Errorcode =", alloc stat 320

allok = .False.
Stop

end if

Deallocate( c, stat=alloc stat )
if ( alloc stat .ne. 0 ) then

Print*, "Deallocation of c failed. Errorcode =", alloc stat

allok = .False.
Stop

end if 330

Deallocate( na, stat=alloc stat )
if ( alloc stat .ne. 0 ) then

Print*, "Deallocation of na failed. Errorcode =", alloc stat

allok = .False.
Stop

end if

END DO

610 CONTINUE 340

Call MPI Barrier( MPI COMM WORLD, ierr )

If ( myid .eq. 0 ) Then

Print 1020
If ( allok ) Print 1040 ! FIXME (all proc’s)

End If

! --------------------------------------------------------------------

! Close files and exit MPI environment. 350

! ---

Close( luin )

Close( lura )

Close( luja )

call MPI_Finalize( ierr )

! --------------------------------------------------------------------

! Formats.

! ---

1000 Format ( /, " ", 48(’−’), & 360

’−−−−−−−−−−−−−−−−−−−−−−−−−−−’, &

/,’ Mod3a: Out−of−core Matrix−vector ’, &

’multiplication’,/ &

74(’−’),/ &

’ Row | Column | Exec. time | Mflop rate |’, &

’ Read rate | Write rate |’,/ &

’ (n) | (m) | (sec) | (Mflop/s) |’, &

’ (MB/s) | (MB/s) |’,/ &

’−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+’, &

’−−−−−−−−−−−−−+−−−−−−−−−−−−−+’ ) 370

1010 Format ( I7, ’ |’, I7, ’ |’, G13.5, ’|’, G13.5, ’|’, G13.5, &

’|’, G13.5, ’|’ )

1020 Format ( 74(’−’) )

1030 Format ( ’Deviation in row ’, I7, ’ = ’, G13.5 )

1040 Format ( //,’ >>> All results were within error bounds <<<’ )

! --------------------------------------------------------------------

End Program mod3a

27



Subroutine genraja( m, n, i, na, na˙max, ra, ja, lura, luja, &

idum, writim )

! --------------------------------------------------------------------

! Routine ’genraja’ generates the relevant parts of the arrays ’ra’ and ’ja’.
! The relevant parts of these arrays are written per row to unit ’lura’ and

! ’luja’, respectively.
! Note that ra and ja are actually na max long, but only na(i) is used.
! −−−

Use numerics 10

Use mpi

Implicit None

Integer :: na max

Real(l ) :: ra(na max)
Integer :: ja(na max)

Integer :: m, n, i, lura, luja

Integer :: na(n), idum

Real(l ) :: writim 20

! Local constants and variables.
Real(l ), External :: dran1

Real(l ), Parameter :: one = 1.0 l

Integer :: j, alloc stat, t0

! Generate data.
Do j = 1, na(i)

ra(j) = one

ja(j) = Min( m, Int( m*dran1( idum ) ) + 1 ) 30

End Do

! Write data to lura and luja.
t0 = MPI Wtime()

Write( lura ) ra(1 : na(i))
Write( luja ) ja(1 : na(i))

writim = writim + MPI Wtime() − t0

40

End Subroutine genraja

Subroutine smxv( m, n, i, b, c, na, na max, ra, ja, myoffset, lura, luja, &
readtim, myid, nprocs )

Use numerics

Use mpi

Implicit None

Integer :: na max

Real(l ) :: ra( na max )
Integer :: ja( na max )

10

Integer :: m, n, i, lura, luja

Integer :: myoffset, na(n)
Integer :: myid, nprocs

Real(l ) :: b(m), c(n)
Real(l ) :: readtim

! Local variables and constants.
Integer :: j, alloc stat, ierr, istat( MPI STATUS SIZE )
Real(l ), Parameter :: zero = 0.0 l

20

! Calculate dot product.
c(i) = zero

Do j = 1, na(i)
c(i) = c(i) + ra(j)*b(ja(j))

28



End Do

myoffset = myoffset + na(i)

End Subroutine smxv

B.3 mod3a-6.x generic source code

Subroutine state(prgnam)
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!− This subroutine prints some information about the testing

! circumstances and the name of the calling module.
!
! Parameters

! −−−−−−−−−−
!
! modnam − Character string that represents the name of the calling

! module. 10

!
! Authors: Aad van der Steen

! Date : September 1997.
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!

Implicit None

Character :: prgnam*8, machin*48, memory*48, compil*48, option*48,
& os*48, runby*48, comins*48, prec*48, date*8, time*10

20

!− Please insert the correct data for the current testing circumstances:

! 123456789 123456789 123456789 123456789 12345678

Data machin / ’IP27 mips ’/
Data memory / ’826 MiB ’/
Data compil / ’MIPSpro Compilers: Version 7.30 (f90) ’/
Data option / ’-O3 -lmpi ’/
Data os / ’IRIX64 ’/
Data prec / ’\64-bits precision ’/ 30

Data runby / ’M.M.P. van Hulten ’/
Data comins / ’Utrecht University ’/

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− Number of bits in floating−point representation.

Write( prec(1:3), ’(i3)’ ) 8*8
Print 9010, prgnam, machin, memory, compil, option, os,

& prec, runby, comins

! −−− Report Date and time of calling.
40

Call date and time( date, time )
Print 9020, date(7:8), date(5:6), date(1:4),

& time(1:2), time(3:4), time(5:10)
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9010 Format( ’ EuroBen single-CPU benchmark V4.2, program ’,A8/

& 1X, 75(’-’)/
& ’ Testing circumstances:’/
& ’ Computer ’, A48/
& ’ Memory size ’, A48/
& ’ Compiler version ’, A48/ 50

& ’ Compiler options ’, A48/
& ’ Operating System version ’, A48/
& ’ Working precision ’, A48/
& ’ Run by ’, A48/
& ’ Company/Institute ’, A48/ )

9020 Format( ’ Day: ’, A2,

29



& 3X, ’Month: ’, A3,
& 3X, ’Year: ’, A4/
& ’ It is now ’, A2, ’ hours, ’, A2, ’ minutes and ’, A2,
& ’ seconds’/ 60

& 1X, 75(’-’) )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

End Subroutine state

Subroutine Input( lu, filename, size, myid )

Use mpi

Implicit None

Integer :: lu, myid

Integer( kind=MPI OFFSET KIND ) :: size

Character*11 :: filename

! Local variables 10

Integer :: m, n, ierr, stat( MPI STATUS SIZE )
Logical :: existing, putin

INQUIRE( FILE = filename, EXIST = existing )

if ( .not. (existing) ) then

if ( myid .eq. 0 ) then

Print*, "Input file does not exist!"

putin = .True.
Do While ( putin ) 20

Print*, "Please enter dimensions of the matrix (m n)."

Read( *, * ) m, n

Print*, "Do you want to enter more input (T, F)?"

Read( *, * ) putin

End Do

end if

Call MPI File open( MPI COMM WORLD, ’mod3a.in’, &
MPI MODE RDWR + MPI MODE CREATE, MPI INFO NULL, lu, ierr )

if ( myid .eq. 0 ) then

Call MPI File write( lu, m, 1, MPI INTEGER, stat, ierr ) 30

Call MPI File write( lu, n, 1, MPI INTEGER, stat, ierr )
end if

Call MPI File close( lu, ierr )
else

Print*, "Input file exists, continuing."

end if

Call MPI File open( MPI COMM WORLD, "mod3a.in", MPI MODE RDONLY, &
MPI INFO NULL, lu, ierr )

40

Call MPI Barrier( lu, ierr )
Call MPI File get size( lu, size, ierr )

End Subroutine Input

Subroutine ErrorCheck( varname, errcode )

Character*6 :: varname

Integer :: errcode

If ( errcode .ne. 0 ) Then

Print*, "Allocation of ", varname, " failed. Errorcode =", errcode

Call MPI Finalize( ierr )
If ( ierr .ne. 0 ) Then

Print*, "MPI_Finalize error:", ierr 10

30



End If

Stop

End If

End Subroutine ErrorCheck

Function dran1( idum ) Result( ran )
Use numerics

Implicit None

Integer :: idum

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− dran1 returns a uniform deviate in (0,1).
!
! −−− The algorithm is taken from Press & Teukolsky et.al. and

! based on the linear congruential method with choices for 10

! M, IA, and IC that are given by D. Knuth in "Semi−numerical

! algorithms.
!
! −−− Input−parameters:
! Integer − idum. When idum < 0 the sequence of random values

! When idum >= 0, DRAN1 returns the next value

! in the sequence. When DRAN1 is called for

! the first time it is also initialised.
!
! −−− Output−parameters: 20

! Integer − idum. Next value of seed as produced by DRAN1.
! Real(l ) − ran. Uniform deviate in (0,1)
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!

Real(l ) :: ran, r(97)
Integer :: iff, ix1, ix2, ix3, j

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− Definitions of the three linear congruences used in generating

! the random number.
30

Integer, Parameter :: m1 = 259200, ia1 = 7141, ic1 = 54773,
& m2 = 134456, ia2 = 8121, ic2 = 28411,
& m3 = 243000, ia3 = 4561, ic3 = 51349
Real(l ), Parameter :: one = 1.0 l , rm1 = one/m1,

& rm2 = one/m2

!
Save iff, r, ix1, ix2, ix3

Data iff/0/
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− (Re)initialise if required. 40

If( idum < 0 .OR. iff == 0 ) Then

iff = 1
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− Seed first generator.

ix1 = Mod( ic1 − idum, m1 )
ix1 = Mod( ia1*ix1 + ic1, m1 )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− Use it to seed the second generator. 50

ix2 = Mod( ix1, m2 )
ix1 = Mod( ia1*ix1 + ic1, m1 )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− Use generator 1 again to seed generator 3.

ix3 = Mod( ia1*ix1, m3 )
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− Now fill array with random values, using gen. 2 for the high

! order bits and gen. 1 for the low order bits. 60

31



Do j = 1,97
ix1 = Mod( ia1*ix1 + ic1, m1 )
ix2 = Mod( ia2*ix2 + ic2, m2 )
r(j) = ( Real( ix1, l ) + Real( ix2, l )*rm2 )*rm1

End Do

idum = 1
End If

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−− This section is only reached when no (re)initialisation takes 70

! place. A new random number is generated to fill the place of

! a randomly picked element from array R (the selection of the

! index is done by gen. 3).

ix1 = Mod( ia1*ix1 + ic1, m1 )
ix2 = Mod( ia2*ix2 + ic2, m2 )
ix3 = Mod( ia3*ix3 + ic3, m3 )
j = 1 + (97 + ix3)/m3

ran = r(j)
r(j) = ( Real( ix1, l ) + Real( ix2, l )*rm2 )*rm1 80

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
End Function dran1

Module numerics

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! We define a Real type that presumably has the characteristics

! of 4 and 8−byte IEEE 754 floating−point types.
! (We assume the Integer type to be ’large enough’).
!
Integer, Parameter :: s = Selected Real Kind(6,37)
Integer, Parameter :: l = Selected Real Kind(15,307)

End Module numerics 10

References

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the solution of linear
systems: Building blocks for iterative methods.

[2] W. Gropp, E. Lusk, and A. Skjellum. Using MPI - Portable Parallel Program-

ming with the Message Passing Interface. Massachusetts Instutute of Technol-
ogy, second edition, 1999.

[3] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2 - Advanced Features of

the Message Passing Interface. Massachusetts Institute of Technology, second
edition, 1999.

[4] http://www.gnu.org/licenses/gpl.txt.

[5] http://www.phys.uu.nl/∼hulten/mod3a/.

32


